본문 바로가기
SQLD

SQLD 1과목 데이터 모델과 성능 정리

by <<>> 2021. 2. 12.

성능데이터모델링이란?

데이터베이스 성능 향상을 목적으로 설계딴계의 데이터 모델링 때부터 성능과 관련된 사항이 데이터 모델링에 반영될 수 있도록 하는 것이다.

 

 

중복속성에 대한 분리가 1차 정규화의 대상이 되며, ROW 단위의 중복도 1차 정규화의 대상이 되지만 COLUMN 단위로 중복이 되는 경우도 1차 정규화의 대상이다.

 

 

반정규화는 정규화된 엔터티, 속성, 관계에 대해 시스템의 성능향상과 개발(Development)과 운영(Maintenance)의 단순화를 위해 중복, 통합, 분리 등을 수행하는 데이터 모델링의 기법을 의미한다.

 

반정규화는 데이터를 중복하여 성능을 향상시키기 위한 기법이라고 정의할 수 있고 좀 더 넓은 의미의 반정규화는 성능을 향상시키기 위해 정규화된 데이터 모데리에서 중복, 통합, 분리 등을 수행하는 모든 과정을 의미한다.

 

데이터 무결성이 깨질 수 있는 위험을 무릅쓰고 데이터를 중복하여 반정규화를 적용하는 이유는 데이터를 조회할 때 디스크 I/O량이 많아서 성능이 저하되거나 경로가 너무 멀어 조인으로 인한 성능저하가 예상되거나 칼럼을 계산하여 읽을 때 성능이 저하될 것이 예상되는 경우 반정규화를 수행하게 된다.

 

반정규화 절차

1. 반정규화 대상조사

  • 범위처리빈도수 조사
  • 대량의 범위 처리 조사
  • 통계성 프로세스 조사
  • 테이블 조인 개수

2. 다른 방법유도 검토

  • 뷰(VIEW) 테이블
  • 클러스터링 적용
  • 인덱스의 조정
  • 응용어플리케이션

3. 반정규화 적용

  • 테이블 반정규화
  • 속성의 반정규화
  • 관계의 반정규화

 

반정규화의 대상에 대해 다른방법으로 처리

  • 지나치게 많은 조인(JOIN)이 걸려 데이터를 조회하는 작업이 기술적으로 어려울 경우 뷰(VIEW)를 사용하면 이를 해결할 수도 있다.
  • 대량의 데이터처리나 부분처리에 의해 성능이 저하되는 경우에 클러스터링을 적용하거나 인덱스를 조정함으로써 성능을 향상시킬 수 있다.
  • 대량의 데이터는 Primary Key 성격에 따라 부분적인 테이블로 분리할 수 있다. 즉 파티셔닝 기법(Partitioning)이 적용되어 성능저하를 방지할 수 있다.
  • 응용 애플리케이션에서 로직을 구사하는 방법을 변경함으로써 성능을 향상시킬 수 있다.

 

슈퍼/서브 타입 데이터 모델의 변환기술

  • 개별로 발생되는 트랜잭션에 대해서는 개발 테이블로 구성
  • 슈퍼타입+서브타입에 대해 발생되는 트랜잭션에 대해서는 슈퍼타입+서브타입 테이블로 구성
  • 전체를 하나로 묶어 트랜잭션이 발생할 때는 하나의 테이블로 구성

 

 

PK순서를 결정하는 기준은 인덱스 정렬구조를 이해한 상태에서 인덱스를 효율적으로 이용할 수 있도록 PK순서를 지정해야 한다. 즉 인덱스의 특징은 여러개의 속성이 하나의 인덱스로 구성되어 있을 때 앞쪽에 위치한 속성의 값이 비교자로 있어야 인텍스가 좋은 효율을 나타낼 수 있다. 앞쪽에 위치한 속성 값이 가급적 '=' 아니면 최소한 범위 'BETWEEN' '< >'가 들어와야 인덱스를 이용할 수 있는 것이다.

 

 

분산데이터베이스 장단점

1.장점

  • 지역 자치성, 점증적 시스템 용량 확장
  • 신뢰성과 가용성
  • 효용성과 융통성
  • 빠른 응답 속도와 통신비용 절감
  • 데이터의 가용성과 신뢰성 증가
  • 시스템 규모의 적절한 조절
  • 각 지역 사용자의 요구 수용 증대

 

2.단점

  • 소프트웨어 개발 비용
  • 오류의 잠재성 증대
  • 처리 비용의 증대
  • 설계, 관리의 복잡성과 비용
  • 불규칙한 응답 속도
  • 통제의 어려움
  • 데이터 무결성에 대한 위협

 

 

 

'SQLD' 카테고리의 다른 글

SQLD 2과목 3장 SQL 최적화 기본  (0) 2021.03.03
SQLD 과목 2 SQL 활용  (0) 2021.02.26
SQLD 2과목 SQL 기본  (0) 2021.02.22
SQLD 1과목 데이터 모델링의 이해 정리  (0) 2021.02.11
SQLD란? SQLD 시험 접수 방법  (0) 2021.02.10

댓글